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EU Offshore Wind Energy Challenges

Wind Farm (WF) positioning conditioned by:

@ High wind resource availability;

o Low water depths; /ﬂ DTOC

@ On-shore gnd connection aVaIIablIlty THE EUROPEAN ENERGY RESEARCH ALLIANCE

DESIGN TOOLS FOR OFFSHORE WIND FARM CLUSTER

WF clustering is a reality, distance between Wind Turbines (WTs) inside WFs and
distance between WFs decreases...

...and the importance of accurately estimating inter-WT and.inter-WF wakes
increases.

Wake model developed over an in-house developed CFD tool (VENTOS®), under
the EU project EERA-DTOC (3).
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Computational Model

VENTOS®/2 software

Non-linear CFD code geared towards solving wind flow problems
over complex terrain (1; 4): VellfOS
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Computational Model

VENTOS®/2 software

Non-linear CFD code geared towards solving wind flow problems
& & P venios,

ediction

over complex terrain (1; 4):

o Elliptic Finite-volume Reynold averaged Navier-Stokes
solver for non-stratified flows;

@ Two-equation k-¢ turbulence model;

@ Solution as steady-state or
time-dependent problem;
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Computational Model

VENTOS®/2 software

Non-linear CFD code geared towards solving wind flow problems
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over complex terrain (1; 4):
o Elliptic Finite-volume Reynold averaged Navier-Stokes
solver for non-stratified flows;
@ Two-equation k-¢ turbulence model;

@ Solution as steady-state or
time-dependent problem;

@ Structured, horizontally orthogonal,
terrain-following mesh to capture
topography;
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Computational Model

VENTOS®/2 software

Non-linear CFD code geared towards solving wind flow problems ®
: ¢ venfos

over complex terrain (1; 4): PSS
o Elliptic Finite-volume Reynold averaged Navier-Stokes
solver for non-stratified flows;
@ Two-equation k-¢ turbulence model;

@ Solution as steady-state or
time-dependent problem;

@ Structured, horizontally orthogonal,
terrain-following mesh to capture
topography;

@ Channel-like domain,
with static boundary conditions.
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Computational Model
Wake model

WT wake modelling in VENTOS®/2...

Wind Turbine (WT) rotor represented by an Actuator Disk (AD) immersed
in domain mesh:

@ Based on Froude's AD concept (5), with uniform normal loading;
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Computational Model
Wake model

WT wake modelling in VENTOS®/2...

Wind Turbine (WT) rotor represented by an Actuator Disk (AD) immersed
in domain mesh:

@ Based on Froude's AD concept (5), with uniform normal loading;

WT(s) drag implicitly calculated during RaNS solver iteration, using
1-D momentum theory and feeding from intermediate case solution (2);

o Estimates WT's equivalent free-stream velocity U, and power output;

@ Requires only basic WT make/model data: thrust coefficient (Cr)
curve, rotor diameter, hub height;

@ AD rotates towards inflow;
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Computational Model
Wake model

Smooth discretization of WT drag over course
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© Approximate disk velocity Ugisk as hub position velocity, interpolated
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Computational Model

Wake model

Smooth discretization of WT drag over course mesh

© Approximate disk velocity Ugisk as hub position velocity, interpolated
from intermediate solution;

@ Iterate momentum theory’s Ct definition with manufacturer's curve
until convergence on a U /Cr pair:

Udisk
U,

Cr=4a(l—a) with a=1-
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Smooth discretization of WT drag over course mesh

© Approximate disk velocity Ugisk as hub position velocity, interpolated
from intermediate solution;

@ Iterate momentum theory’s Ct definition with manufacturer's curve
until convergence on a U /Cr pair:

Udisk
U,

© Determine total thrust: P N

Cr=4a(l—a) with a=1-

1 H
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Wake model

Smooth discretization of WT drag over course mesh
© Approximate disk velocity Ugisk as hub position velocity, interpolated
from intermediate solution;

@ Iterate momentum theory’s Ct definition with manufacturer's curve
until convergence on a U /Cr pair:

Udisk
U,

Cr=4a(l—a) with a=1-

© Determine total thrust:

1
T=2pCrAs U.’

@ Uniformly distribute T over
high-resolution description of virtual
rotor in cylindrical coordinates;
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Computational Model

Wake model

Smooth discretization of WT drag over course mesh
© Approximate disk velocity Ugisk as hub position velocity, interpolated
from intermediate solution;

@ Iterate momentum theory’s Ct definition with manufacturer's curve
until convergence on a U /Cr pair:

Udisk

Cr=4a(l—a) with a=1- U

© Determine total thrust:

1
T=2pCrAs U.’

@ Uniformly distribute T over
high-resolution description of virtual
rotor in cylindrical coordinates;

© Extrapolate F, distribution from virtual rotor
sink terms in momentum equations.
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Two Offshore Wind Farms
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Two Offshore Wind Farms

Computational costs

To solve all ADs consistently, wind farm has to be resolved with a
minimum of D/4 resolution in the horizontal plane.
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On 8-core intel processors:
o Westerly winds (Rgdsand 2): 7-8M cells, solution in 0.5-1 days wallclock
time;
o Easterly winds (Nysted + Rgdsand 2): around 20M cells, computational
cost very high with strong probability of convergence issues.
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Two Offshore Wind Farms

Computational costs

To solve all ADs consistently, wind farm has to be resolved with a
minimum of D/4 resolution in the horizontal plane.

On 8-core intel processors:
o Westerly winds (Rgdsand 2): 7-8M cells, solution in 0.5-1 days wallclock
time;

o Easterly winds (Nysted + Rgdsand 2): around 20M cells, computational
cost very high with strong probability of convergence issues.

Solution: Break up larger domains into two cases
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Two Offshore Wind Farms

Precursor solution
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Two Offshore Wind Farms

Precursor solution
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Two Offshore Wind Farms

Precursor solution

Solution to precursor case
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Two Offshore Wind Farms

Precursor solution

Use precursor as source for inlet conditions
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Two Offshore Wind Farms

Precursor solution

Solution to full case
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Two Offshore Wind Farms

275°: 290°: 0.64

280°:
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Two Offshore Wind Farms

Results: Westerly winds
Re: Easterly winds

Model results: Westerly winds, "clean” inflow

275°:

2900°: 0.64

280°:

Pavg./Pref.wt in Rgdsand Il

270° 275° 280° 285° 290°

0.80 063 056 056 0.64
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Two Offshore Wind Farms

97°:
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Two Offshore Wind Farms

97°:

Pavg./Pref.wt in Rgdsand Il

77° 87° 97° 107° 117°

0.65 054 052 055 0.65
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@ RaNS-base wake model capable of modelling a large number of WT in a
single simulation;
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Conclusions

Concluding

@ RaNS-base wake model capable of modelling a large number of WT in a
single simulation;

@ Wake modelling at the WF cluster scale is possible, with careful selection
of precursor simulations to produce inflow data;

@ Wake modelling at the WF cluster scale is possible with reasonable
computational effort and little loss of code stability;

o Single WT U over-estimation leads to deficit over-estimation, with
cumulative effects in a WF;

@ Curved WT rows in Rgdsand Il means WF efficiency is strongly dependent
on inflow direction;

o Easterly sector winds show a strong effect of Nysted WF on Rgdsand Il's
entry WTs, effect extending to the inner WTs.
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