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Evaluation of the Park wake model under different
atmospheric stability conditions at the Horns Rev | wind farm
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Abstract

We present the results of the evaluation of the Park wake model against data from
a wind turbine row of the Horns Rev | offshore wind farm. The Park wake model
here used Is similar to that developed in the Wind Atlas Analysis and Application
Program (WAsP). The wind farm data are classified into different atmospheric
static stability conditions based on measurements of a nearby upstream
meteorological mast and the data are filtered to assure that the upstream
conditions at the row and mast are nearly the same. The simulations are
performed based on the observed wind direction and post-processed to account
for the uncertainty in the wind direction. The data and the simulations show good
agreement for all atmospheric stabllity classes; for the first turbines on the row the
agreement Is better by using the recommended WAsSP wake decay coefficient,
whereas for the last turbines it is better to use a stability-dependent wake decay
coefficient. The power deficits are observed to be higher under stable compared to
unstable atmospheric conditions, but attention should be taken as the wind
conditions (speed and direction) are different under the different stablility classes.
Due to the variety of wind directions for each atmospheric stability class (i.e. the
winds do not often come parallel to the rows), the limits of the infinite wind farm are
not approached, which can be tested by computing the Park wake model for an
Infinite number of wind turbines.

Modified Park wake model

The modified Park wake model is similar to that described in [1] and implemented
in WAsSP but taking into account upwind wakes only (sideways or directly). The
wake decay coefficient is estimated as [2],
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where u, .. and uyrr.. are the undisturbed friction velocity and hub-height wind

speed, k is the von Karman constant (0.4), h is the hub height, z, is the roughness
length and ¢,,,(h/L) is the correction due to stability (given by L) at hub height.
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Figs. 2 and 3 show the wind conditions of the
selected data. The wind speeds are therefore
narrowed down to 8.5*+0.5 m/s to reduce
nility. For each stability class, we run
ations at 0.1 deg. resolution with wake
ity dependent wake decays and the
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WASP recommended value. Simulations are

post-processed to partly account for the wind
direction uncertainty as shown in [4], using a
normal distribution with a standard deviation

of 2.5 deg. The idea Is to extract simulations
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Figure 3. Wind direction histograms for each stability class
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Figure 2. Wind speed histograms for each stability class
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each
irection and stability class and
then weight each simulation with
the normal distribution. Results are
illustrated In Fig. 4 and show a
agreement

observed

between the

ensemble averages of simulations
and observations. For each stability
class, the result using the stability
dependent wake decay generally
fits better the power deficit at the
last turbines and that using the
WASP value the deficit at the first

turbines.
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Figure 1. (top left) The Horns Rev | offshore wind farm. (top right) Nacelle position of turbine 07 as function of the direction observed at M2.

(bottom left) Wind speeds observed at M2 and at turbine 07. (bottom right) Power performance at turbine 05 based on the nacelle wind

Concurrent 10-min M2 and turbine data are used. Atmospheric stability is inferred
from observations at M2 as performed In [3]. Scatter plots for wind direction and
speed are performed to filter data assuring similar wind conditions between row E
(used for the analysis) and M2 (see Fig. 1). The final dataset Is classified in four
stability classes: very unstable (magenta), unstable (red), neutral (green) and
stable (blue).
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conditions, once we account for the effect of stability on the wake decay coefficient
and the wind direction uncertainty.
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