Evaluation of the Park wake model under different atmospheric stability conditions at the Horns Rev I wind farm
Alfredo Peña, Pierre-Elouan Réthoré and Ole Rathmann
DTU Wind Energy, Rise campus, Technical University of Denmark, Roskilde, Denmark

Abstract

We present the results of the evaluation of the Park wake model against data from a wind turbine row of the Horns Rev I offshore wind farm. The Park wake model here used is similar to that developed in the Wind Atlas Analysis and Application Program (WAsP). The wind farm data are classified into different atmospheric static stability conditions based on measurements of a nearby upstream meteorological mast and the data are filtered to assure that the upstream conditions at the row and mast are nearly the same. The simulations are performed based on the observed wind direction and post-processed to account for the uncertainty in the wind direction. The data and the simulations show good agreement for all atmospheric stability classes; for the first turbines on the row the agreement is better by using the recommended WAsP wake decay coefficient, whereas for the last turbines it is better to use a stability-dependent wake decay coefficient. The power deficits are observed to be higher under stable compared to unstable atmospheric conditions, but attention should be taken as the wind conditions (speed and direction) are different under the different stability classes. Due to the variety of wind directions for each atmospheric stability class (i.e. the winds do not often come parallel to the rows), the limits of the infinite wind farm are not approached, which can be tested by computing the Park wake model for an infinite number of wind turbines.

Results

Figs. 2 and 3 show the wind conditions of the selected data. The wind speeds are therefore narrowed down to 8.5±0.5 m/s to reduce variability. For each stability class, we run simulations at 0.1 deg. resolution with wake stability dependent wake decays and the WAsP recommended value. Simulations are post-processed to partly account for the wind direction uncertainty as shown in [4], using a normal distribution with a standard deviation of 2.5 deg. The idea is to extract simulations correspondent to the range of wind directions ±3StdDev for each observed direction and stability class and then weight each simulation with the normal distribution. Results are illustrated in Fig. 4 and show a good agreement between the ensemble averages of simulations and observations. For each stability class, the result using the stability dependent wake decay generally fits better the power deficit at the last turbines and that using the WAsP value the deficit at the first turbines.

Concurrent 10-min M2 and turbine data are used. Atmospheric stability is inferred from observations at M2 as performed in [3]. Scatter plots for wind direction and speed are performed to filter data assuming similar wind conditions between row E (used for the analysis) and M2 (see Fig. 1). The final dataset is classified in four stability classes: very unstable (magenta), unstable (red), neutral (green) and stable (blue).

References

Acknowledgments

EWEA 2013, Vienna, Austria: Europe’s Premier Wind Energy Event

Concurrent 10-min M2 and turbine data are used. Atmospheric stability is inferred from observations at M2 as performed in [3]. Scatter plots for wind direction and speed are performed to filter data assuming similar wind conditions between row E (used for the analysis) and M2 (see Fig. 1). The final dataset is classified in four stability classes: very unstable (magenta), unstable (red), neutral (green) and stable (blue).

References


Acknowledgments

EWEA-WakeBench collaboration and EERA-DTOC projects.