CONTENT

- 1. Aims
- 2. Methodology
- 3. Scenarios
- 4. Expected Achievements
- 5. Challenges

Offshore Wind Farm Clusters

Interconnection optimization and Power Plant Services London, UK. 06 June 2013

Dipl.-Ing. Mariano FAIELLA Researcher Fraunhofer IWES, Germany

Support by

• Evaluate impact of the variability and the predictability.

- 1. Determine the models chain, interactions, I/O;
- Establish the data flow/ data gaps according to the user cases;
- 3. Procedure to fill overcome gaps was investigated:
 - 1. Automatic electrical data generation
 - 2. User intervention providing accurate data.
 - 3. Implementation of a new module
- 4. Dry runs (based on scenarios)
- 5. Assessment/ convenience evaluation

2. Methodology

2. Methodology

2. Methodology

3. Scenarios > Kriegers Flak case study

	<u> </u>						
32		Country	Wind farm			Capacity	
	1	DK	Kriegers Flak A K2			200	
32.02	2DKKriegers Flak A K33DKKriegers Flak A K4				3	200	
					4	200	
	4 DK Kriegers Flak B K1			1	200		
	5	DE	EnBW Baltic 2			288	
37 98	6 DE EnBW Baltic 1				48		
	7	DE	Baltic Power Wikinger Arkona Becken Südost Kriegers Flak			500	
	8	DE				400	
24	9	DE				480	
	10	SE				640	
23	1						
		Branch type		max	max		
				distance	power		
	AC			65 km	700	700 MW	
35 3 36	DC-direct			1000	MW		
		DC-mesh	1		1000	MW	
	• 7	converter			1000 MW		

3. Scenarios > Kriegers Flak case study

3. Scenarios > Clustering

Figure 2-1: Example of grid optimisation; a) with pre-clustering; and b) without pre-clustering and all possible offshore branches included. The indicated solutions to the right are just for illustration and not based on any actual optimisation.

- Strategic Planners requirements:
 - Optimum strategic infrastructure.
- Developers requirement, to assist the user finding:
 - optimum cable layout
 - optimum number of substations \rightarrow clustering.
 - Optimum installed capacity within a site boundary.
 - Optimum transmission technology (e.g. HVDC or HVAC).
 - Test design according to grid code.

- Checking planned grid:
 - Fulfillment of full load flows → calculate component utilization factors.
 - Fulfillment of certain average load flows situations.
 - Checking congestions and voltages.
 - Control power:
 - Power reserve
 - Balancing power
 - Voltage Control
 - Enabling market/ transport

4. Expected Achievements > Voltage Control DTOC 1. Offshore nodes U control 2. Onshore Q contribution W W W W W W W W W W W W W W W W 🖌 W W W W

4. Expected Achievements > Frequency Support

DTOC

EERA

Source: Malte Jansen – Fraunhofer IWES

1. Provide the right features for the user

- 2. Gap between the different modules/ addition of new electrical data and components
- 3. Lack of precise information required for electrical calculations in future scenarios (cables, trafos, voltage levels) in 2020/2030/2050? (only assumptions)
- 4. The availability of updated cost information and validation data for the study cases, essential to correctly parameterize the optimization process.

Thank you very much for your attention

Support by

1. Achievements > How to overtake info gaps

1. Achievements > How to overtake info gaps

2. Expected Achievements > V&P

