

EERA-DTOC: DESIGN TOOLS FOR OFF-SHORE WIND FARM CLUSTERS: Calculation of scenarios

G. Schepers ECN



Support by





#### Contents



- Scenarios: Why and how?
- Scenarios: Preparations
- Scenarios: Status and summary

#### **EERA-DTOC** summary slide





#### **EERA-DTOC:** main idea



- Use and bring together existing models from the partners
- Develop open interfaces between them
- Implement a shell to integrate
- Fine-tune the wake models using dedicated measurements
- Validate and demonstrate the final tool through likely scenarios

#### Scenario calculation



- Scenarios are calculated under WP 5.3: 'Demonstration'
- <u>Participants</u>: ECN, Overspeed, Iberdrola, Statoil, Carbon Trust, Hexicon, Statkraft, E.ON. RES, Fraunhofer-IWES and DTU

#### **Motivation**



- The INTEGRATED design tool should be demonstrated
- Measurement data are scarce and measurement data for wind farm clusters are fully missing
  - Tools will be demonstrated on basis of likely scenarios.
  - Where possible measurements are used (Rødsand-II (E.On), Bard-Offshore-1 (Forwind/Fraunhofer-IWES)
- Industry should be heavily involved in the definition of scenarios

#### PURPOSE OF THE SCENARIOS



- Functionality of all modules in EERA-DTOC should be proven
- All parts of the tool should be activated during the scenarios
- The tool should fullfill the previously defined user requirements
  - The tool should be useful, easy to use, complete and robust
- Inventory of user experiences:
  - How steep is the learning curve?
  - Which tutorials should be added?
- The results should be realistic from an expert point of view,

#### PURPOSE OF THE SCENARIOS, ctd



- Demonstrations should prove that EERA-DTOC has industrial usefulness
- Involvement of industry is assured by active participation of industrial EERA-DTOC participants
- Strategic developers from outside the project are invited to support the demonstration.

#### **SCENARIOS: APPROACH**



- Scenario calculation can only start after an EERA-DTOC prototype version is ready for use and we know precisely what it does
- Nevertheless some first trial calculations are done by ECN and DTU to 'test' the scenario.
  - Also other tool developers use the scenario to test the functionality of their models in the scenarios
- We are very well prepared to start up the scenario as soon as the DTOC is available
  - > refinement of scenario

## SCENARIOS: APPROACH, CTD



- 3 different scenarios are considered
  - Base scenario #1: Considers future wind farms with characteristics similar to present wind farms
  - Additional scenarios #2: Including upscaled and floating turbines clusters of differently sized farms
  - Likely scenarios #3: For future wind farm clusters to assess the energy yield on short and long time scale

## SCENARIOS, APPROACH ctd



- Sequence of 3 scenarios reflects:
  - A shift towards the future (→upscaled turbines, floating turbines, large clusters)
  - Increasing complexity of the modeling problem
  - A shift in target group:
    - Developers (base scenario)
    - Developers and strategic planners (likely scenarios)

#### Contents



- Scenarios: Why and how?
- Scenarios: Preparations
- Scenarios: Status and summary

## PREPARATIONS, BASE SCENARIO#1



- Considers future wind farms with characteristics similar to present wind farms at constant wind climate
  - Will be inspired by Kriegers Flak as used in WP2
  - Definition still needs to be worked out in the next months.
    - Base scenario is a 'stripped version' of the additional scenario which is worked out in more detail on the next slides

# PREPARATIONS: ADDITIONAL SCENARIO #2 DTOC

Additional scenarios with upscaled and floating turbines and with different sized wind farms, both inter and intra array layouts

- Start with a wind farm of 1000 MW which consists of 100\*10 MW turbines.
- An incremental approach will be followed:
  - Start with a single wind farm
  - Add other wind farms including:
    - Differently sized wind farms
    - Floating turbines

#### ADDITIONAL SCENARIO#2: 'BASIC' INPUT



#### Turbines

- 10 MW turbine (D ~ 200 m) with fixed jacket foundation at 40 m water depth
- 10 MW turbines are not on the market yet but recently two other EU-FP7 projects have started/are approved which will design a 10 MW reference turbine
  - Innwind.EU and Avatar \*)
    - 'Conventional induction': a~1/3-> high power (Betz!)
      versus 'low induction': a < 1/3 → low loads</li>
    - Low induction gives considerably lower wind farm effects!!
- Electrical design according to IEC 61400-27-1 under condition that desired aerodynamic turbine characteristics can be obtained

<sup>\*)</sup> Note: Most wake models only need rotor characteristics from these turbines

# ADDITIONAL SCENARIO #2: 'BASIC' INPUT, CTD



- Wind climate known from
  - Array of wind profiling (LIDAR)
  - Satellite data
  - Mesoscale modelling
    - Sufficient data for wake models
    - Long term correlated time series from Corwind

## ADDITIONAL SCENARIO#2: 'BASIC'



INPUT, CTD

Layout of single 1 GW wind farm.



#### Note:

<u>Electrical infrastructure will be</u> optimised by EERA-DTOC from given on-shore nodes and HVDC between farm and onshore node, where distance farm-shore ~ 150 km

Next steps: Clusters will be built of 2 GW, 5GW (including floating turbines) and 10GW (also differently sized farms)

#### **ADDITIONAL SCENARIO#2: OUTPUT**



- Wind farm power (aerodynamic minus electrical losses)
- Grid optimisation (e.g. radial or double sided, voltage levels, inter and intra connections)





- Ancillary services (Frequency support services, Voltage support services, Congestion analysis, Provision of balancing power)
- Costs

## ADDITIONAL SCENARIO#2: PREPARATORY RUNS DTOC

- Demonstrate value of INTEGRATED electrical-aerodynamic tool
  - Farmflow/EEFARM calculates the aerodynamic wind farm losses, the electrical losses and the costs for the electrical infrastructure
- 1 GW wind farm
- Start with 20D distance between the turbines
  - low aerodynamic losses versus high electrical losses and high costs for electrical infrastructure)
  - high COE
- Decrease distance (piecewise with 1.0D)
  - Higher aerodynamic losses versus lower electrical losses and lower costs for electrical infrastructure
  - Find optimum distance in terms of COE

# ADDITIONAL SCENARIO#2, PREPARATORY RUNS, CTD



#### LIKELY SCENARIOS #3



- For future wind farm clusters to assess the energy yield on short and long time scale
- Fully open for discussion and suggestions from outside the project!

#### Contents



- Scenarios: Why and how?
- Scenarios: Preparations
- Scenarios: Status and summary

#### **SUMMARY**



- Scenarios need to be defined to demonstrate the EERA-DTOC
- Calculation can only start when an EERA-DTOC version is ready but the definition of scenarios is underway
- Main activity has been on the description of the additional scenario for which some trial calculations will start soon
- Definition of scenarios is open for discussions/suggestions outside the project!



Thank you very much for your attention